Performance Plus
1st European Workshop – 19th Nov. 2014

Meteorological modeling: Short-term forecasting and nowcasting of solar irradiance

Author: John Kalisch, Thomas Schmidt, Elke Lorenz

Energy Meteorology, University of Oldenburg, Germany

This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 308991.
Motivation
Outline

- Introduction: forecasting and time horizons
- Sky imagery, hardware and application
- Cloud shadow mapping
- Cloud motion vectors
- Irradiance forecasting and evaluation
Irradiance Forecasting and PV Prediction

- Forecast horizon
- Minutes
- Hours
- Days

- Sky images
- Satellite data
- ECMWF forecast
- DWD forecast

- Irradiance measurement
- PV power measurement

- Site-specific irradiance prediction
- Power prediction
- PV simulation
- Up-scaling

- Representative PV system sites
- PV system description
- Regional PV power prediction

- Module type
- Nominal power

- Tilt and orientation
Very short-term forecasting

Applications for shortest solar forecasting:
- Offgrid PV-Diesel-plants, optimizing standby of the Diesel generator
- Self-consumption, intelligent household electrics
- Battery management
Sky imagery – cloud remote sensing

Sky imager

- Monitoring, archiving
- Calculation of cloud cover, cloud type, direct sun
- Cloud motion vectors
- Retrieve irradiance forecast
- Advantage: Reproducebility of the data
Cloud decision process

- Analyse each single pixel: Red-Blue-Ratio to separate Cloud and blue sky
- Clear sky library for corrections
- Apply global threshold
- Calculate cloudy and blue pixels
Shadow mapping

From binary cloud cover to surface shadow maps:

1. Consider orientation of imager
2. Lens function -> undistorted 2D clouds
3. Estimation of cloud height or ceilometer measurement (single layer assumption)
4. Geometric calculation of position of clouds (zenith and azimuth angle)
Surface Irradiance Estimation

- Interpolating image pixels to regular grid
- Smoothing values with Gaussian filter (3x3 cells)
Surface Irradiance Estimation

- Interpolating image pixels to regular grid
- Smoothing values with Gaussian filter (3x3 cells)
- Analyse past clear sky indices (1 hour) to find typical values for shadow / no shadow

\[
\text{ClearSkyIndex} = \frac{\text{GHI}_{\text{meas}}}{\text{GHI}_{\text{clearsky}}}
\]
1. Corner Detection (Shi-Tomasi-Algorithm): Find good points to track (mask horizon and sun region)

2. Optical flow (Lucas-Kanade-Algorithm): Find the points in the subsequent image

3. Quality check of vectors

4. Averaging to global vector
Experimental validation, HD(CP)2 campaign

100 pyranometer stations, high temporal and spatial resolution:
- Investigation of cloud-radiative-effects (shadowing, enhancements)
- Validation of 4D MC radiative transfer models
- Validation of satellite products
- Analysis of cloud shadows for PV-power modelling
Experimental validation, HD(CP)2 campaign

100 autonomous stations:
10 Hz sampling
- Solar irradiance
- Temperature
- Rel. humidity
- GPS: time, lat., lon.

Photodiode-Pyranometer EKO ML20 VM
- Spectral range: 300-1100nm
Experimental validation, HD(CP)2 campaign

- 100 pyranometers in Jülich Apr. - July 2013
- 8 x 10 km2
- Irradiance: 1sec resolution
- Sky imager, resolution 15sec
- Ceilometer for cloud height detection
Experimental validation, HD(CP)2 campaign

Experimental validation, HD(CP)2 campaign

2013-05-24 12:06:00 UTC

Raw Image (masked and rotated)

Cloud Decision Map

Cloud Base Height: 2230.0m

Station 45

Irradiance [W/m2]

0 200 400 600 800 1000 1200 1400

Forecast Horizon [s]

Analyses
Forecast
Measurement
Clear Sky
Forecast evaluation

Performance of sky imager forecast is estimated as forecast skill:

\[FS = 1 - \left(\frac{relRMSE_{Forecast}}{relRMSE_{Persistance}} \right) \]

- \(FS > 0 \): Forecast better than Persistence
- \(FS < 0 \): Forecast worse than Persistence

FS increases with forecast lead time

On most days forecast performance is worse than persistence
Forecast evaluation

Performance of sky imager forecast is estimated as forecast skill:

\[FS = 1 - \left(\frac{relRMSE_{\text{Forecast}}}{relRMSE_{\text{Persistance}}} \right) \]

FS > 0: Forecast better than Persistance
FS < 0: Forecast worse than Persistance

Example:
24th May 2013
FS > 0 after 6 min
Forecast evaluation

Performance of sky imager forecast is estimated as forecast skill:

\[FS = 1 - \left(\frac{\text{relRMSE}_{\text{Forecast}}}{\text{relRMSE}_{\text{Persistence}}} \right) \]

FS > 0: Forecast better than Persistence
FS < 0: Forecast worse than Persistence

Example:
24th May 2013
FS > 0 after 6 min
Forecast evaluation
→ What do we learn?

• Sky imager analysis can improve irradiance forecasts on small temporal and spatial scales

• Improvements exist for broken cloud scenarios, not for clear sky and overcast

• Sky imager based forecast quality depend on:
 – Wind speed
 – Cloud height, cloud development, vertical extension
 – Solar elevation
 – Imager position / geometric projection
Thank you for Your attention!